Problem 1

If $f(x)=\sin \left(x^{3}\right)$, find $f^{(15)}(0)$.

Solution

The formula for the Taylor series of a function $f(x)$ is

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} .
$$

In order to answer the question, we'll have to figure out what the coefficient is of the x^{15} term. The Taylor series of $\sin x$ centered at $x=0$ is

$$
\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}
$$

To get the Taylor series for $\sin x^{3}$ centered at $x=0$, simply replace x with x^{3} in the formula.

$$
\sin x^{3}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}\left(x^{3}\right)^{2 n+1}
$$

Hence,

$$
\sin x^{3}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{6 n+3}
$$

To get 15 in the exponent of x, we have to set n equal to 2 . Plugging in $n=2$ yields

$$
\frac{(-1)^{2}}{5!}
$$

for the coefficient of x^{15}. According to the definition of the Taylor series, this has to be equal to

$$
\frac{f^{(15)}(0)}{15!} .
$$

We thus have an equation we can use to answer the question.

$$
\frac{f^{(15)}(0)}{15!}=\frac{1}{5!}
$$

Therefore,

$$
f^{(15)}(0)=\frac{15!}{5!}=10897286400
$$

